ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations
نویسندگان
چکیده
Consider a fractional Brownian motion (fBM) [Formula: see text] with Hurst index text]. We construct probability space supporting both B H and fully simulatable process such that[Formula: one for any user-specified error bound When text], we further enhance our guarantee to the α-Hölder norm This enables us extend algorithm simulation of fBM-driven stochastic differential equations Under mild regularity conditions on drift diffusion coefficients Y, Y one. Our algorithms enjoy tolerance-enforcement feature, under which bounds can be updated sequentially in an efficient way. Thus, readily combined other advanced techniques estimate expectations functionals fBMs efficiently.
منابع مشابه
Existence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
existence and measurability of the solution of the stochastic differential equations driven by fractional brownian motion
متن کامل
Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion
We study the ergodic properties of finite-dimensional systems of SDEs driven by non-degenerate additive fractional Brownian motion with arbitrary Hurst parameter H ∈ (0, 1). A general framework is constructed to make precise the notions of “invariant measure” and “stationary state” for such a system. We then prove under rather weak dissipativity conditions that such an SDE possesses a unique st...
متن کاملStochastic Differential Equations Driven by a Fractional Brownian Motion
We study existence, uniqueness and regularity of some sto-chastic diierential equations driven by a fractional Brownian motion of any Hurst index H 2 (0; 1): 1. Introduction Fractional Brownian motion and other longgrange dependent processes are more and more studied because of their potential applications in several elds like telecommunications networks, nance markets, biology and so on The ma...
متن کاملStochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion
We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H > 1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration, and the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2021
ISSN: ['0364-765X', '1526-5471']
DOI: https://doi.org/10.1287/moor.2020.1078